Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells
Mayara Garcia de Mattos Barbosa, Adam R. Lefferts, Daniel Huynh, Hui Liu, Yu Zhang, Beverly Fu, Jenna Barnes, Milagros Samaniego, Richard J. Bram, Raif S. Geha, Ariella Shikanov, Eline T. Luning Prak, Evan A. Farkash, Jeffrey L. Platt, Marilia Cascalho
Mayara Garcia de Mattos Barbosa, Adam R. Lefferts, Daniel Huynh, Hui Liu, Yu Zhang, Beverly Fu, Jenna Barnes, Milagros Samaniego, Richard J. Bram, Raif S. Geha, Ariella Shikanov, Eline T. Luning Prak, Evan A. Farkash, Jeffrey L. Platt, Marilia Cascalho
View: Text | PDF
Research Article Genetics Inflammation

TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells

  • Text
  • PDF
Abstract

Host genes define the severity of inflammation and immunity but specific loci doing so are unknown. Here we show that TNF receptor superfamily member 13B (TNFRSF13B) variants, which enhance defense against certain pathogens, also control immune-mediated injury of transplants, by regulating innate B cells’ functions. Analysis of TNFRSF13B in human kidney transplant recipients revealed that 33% of those with antibody-mediated rejection (AMR) but fewer than 6% of those with stable graft function had TNFRSF13B missense mutations. To explore mechanisms underlying aggressive immune responses, we investigated alloimmunity and rejection in mice. Cardiac allografts in Tnfrsf13b-mutant mice underwent early and severe AMR. The dominance and precocity of AMR in Tnfrsf13b-deficient mice were not caused by increased alloantibodies. Rather, Tnfrsf13b mutations decreased “natural” IgM and compromised complement regulation, leading to complement deposition in allografted hearts and autogenous kidneys. Thus, WT TNFRSF13B and Tnfrsf13b support innate B cell functions that limit complement-associated inflammation; in contrast, common variants of these genes intensify inflammatory responses that help clear microbial infections but allow inadvertent tissue injury to ensue. The wide variation in inflammatory reactions associated with TNFRSF13B diversity suggests polymorphisms could underlie variation in host defense and explosive inflammatory responses that sometimes enhance morbidity associated with immune responses.

Authors

Mayara Garcia de Mattos Barbosa, Adam R. Lefferts, Daniel Huynh, Hui Liu, Yu Zhang, Beverly Fu, Jenna Barnes, Milagros Samaniego, Richard J. Bram, Raif S. Geha, Ariella Shikanov, Eline T. Luning Prak, Evan A. Farkash, Jeffrey L. Platt, Marilia Cascalho

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts