Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Submit a Letter to the Editor

Intranasal immunization with peptide-based immunogenic complex enhances BCG vaccine efficacy in a murine model of tuberculosis
Santosh Kumar, … , Gobardhan Das, Ved Prakash Dwivedi
Santosh Kumar, … , Gobardhan Das, Ved Prakash Dwivedi
Published January 14, 2021
Citation Information: JCI Insight. 2021;6(4):e145228. https://doi.org/10.1172/jci.insight.145228.
View: Text | PDF
Research Article Immunology Infectious disease

Intranasal immunization with peptide-based immunogenic complex enhances BCG vaccine efficacy in a murine model of tuberculosis

  • Text
  • PDF
Abstract

Prime-boost immunization strategies are required to control the global tuberculosis (TB) pandemic, which claims approximately 3 lives every minute. Here, we have generated an immunogenic complex against Mycobacterium tuberculosis (M.tb), consisting of promiscuous T cell epitopes (M.tb peptides) and TLR ligands assembled in liposomes. Interestingly, this complex (peptide–TLR agonist–liposomes; PTL) induced significant activation of CD4+ T cells and IFN-γ production in the PBMCs derived from PPD+ healthy individuals as compared with PPD– controls. Furthermore, intranasal delivery of PTL significantly reduced the bacterial burden in the infected mice by inducing M.tb-specific polyfunctional (IFN-γ+IL-17+TNF-α+IL-2+) immune responses and long-lasting central memory responses, thereby reducing the risk of TB recurrence in DOTS-treated infected animals. The transcriptome analysis of peptide-stimulated immune cells unveiled the molecular basis of enhanced protection. Furthermore, PTL immunization significantly boosted the Bacillus Calmette-Guerin–primed (BCG-primed) immune responses against TB. The greatly enhanced efficacy of the BCG-PTL vaccine model in controlling pulmonary TB projects PTL as an adjunct vaccine against TB.

Authors

Santosh Kumar, Ashima Bhaskar, Gautam Patnaik, Chetan Sharma, Dhiraj Kumar Singh, Sandeep Rai Kaushik, Shivam Chaturvedi, Gobardhan Das, Ved Prakash Dwivedi

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts