Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Submit a Letter to the Editor

Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R–dependent manner
Sara L. Jepsen, … , Rainer E. Martin, Jens J. Holst
Sara L. Jepsen, … , Rainer E. Martin, Jens J. Holst
Published January 12, 2021
Citation Information: JCI Insight. 2021;6(4):e143228. https://doi.org/10.1172/jci.insight.143228.
View: Text | PDF
Research Article Endocrinology Metabolism

Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R–dependent manner

  • Text
  • PDF
Abstract

Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor–dependent (GLP-1R–dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R–specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R–independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.

Authors

Sara L. Jepsen, Nicolai J. Wewer Albrechtsen, Johanne A. Windeløv, Katrine D. Galsgaard, Jenna E. Hunt, Thomas B. Farb, Hannelouise Kissow, Jens Pedersen, Carolyn F. Deacon, Rainer E. Martin, Jens J. Holst

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts