Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Submit a Letter to the Editor

Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size
Lina Sui, … , Sandra Kleiner, Dieter Egli
Lina Sui, … , Sandra Kleiner, Dieter Egli
Published February 2, 2021
Citation Information: JCI Insight. 2021;6(5):e141553. https://doi.org/10.1172/jci.insight.141553.
View: Text | PDF
Research Article Cell biology Stem cells

Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size

  • Text
  • PDF
Abstract

Limitations in cell proliferation are important for normal function of differentiated tissues and essential for the safety of cell replacement products made from pluripotent stem cells, which have unlimited proliferative potential. To evaluate whether these limitations can be established pharmacologically, we exposed pancreatic progenitors differentiating from human pluripotent stem cells to small molecules that interfere with cell cycle progression either by inducing G1 arrest or by impairing S phase entry or S phase completion and determined growth potential, differentiation, and function of insulin-producing endocrine cells. We found that the combination of G1 arrest with a compromised ability to complete DNA replication promoted the differentiation of pancreatic progenitor cells toward insulin-producing cells and could substitute for endocrine differentiation factors. Reduced replication fork speed during differentiation improved the stability of insulin expression, and the resulting cells protected mice from diabetes without the formation of cystic growths. The proliferative potential of grafts was proportional to the reduction of replication fork speed during pancreatic differentiation. Therefore, a compromised ability to enter and complete S phase is a functionally important property of pancreatic endocrine differentiation, can be achieved by reducing replication fork speed, and is an important determinant of cell-intrinsic limitations of growth.

Authors

Lina Sui, Yurong Xin, Qian Du, Daniela Georgieva, Giacomo Diedenhofen, Leena Haataja, Qi Su, Michael V. Zuccaro, Jinrang Kim, Jiayu Fu, Yuan Xing, Yi He, Danielle Baum, Robin S. Goland, Yong Wang, Jose Oberholzer, Fabrizio Barbetti, Peter Arvan, Sandra Kleiner, Dieter Egli

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts