Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Blood-retina barrier failure and vision loss in neuron-specific degeneration
Elena Ivanova, … , Glen T. Prusky, Botir T. Sagdullaev
Elena Ivanova, … , Glen T. Prusky, Botir T. Sagdullaev
Published March 19, 2019
Citation Information: JCI Insight. 2019;4(8):e126747. https://doi.org/10.1172/jci.insight.126747.
View: Text | PDF
Research Article Ophthalmology Vascular biology

Blood-retina barrier failure and vision loss in neuron-specific degeneration

  • Text
  • PDF
Abstract

Changes in neuronal activity alter blood flow to match energy demand with the supply of oxygen and nutrients. This functional hyperemia is maintained by interactions among neurons, vascular cells, and glia. However, how changing neuronal activity prevalent at the onset of neurodegenerative disease affects neurovascular elements is unclear. Here, in mice with photoreceptor degeneration, a model of neuron-specific dysfunction, we combined the assessment of visual function, neurovascular unit structure, and blood-retina barrier permeability. We found that the rod loss paralleled remodeling of the neurovascular unit, comprising photoreceptors, retinal pigment epithelium, and Muller glia. When substantial visual function was still present, blood flow became disrupted and the blood-retina barrier began to fail, facilitating cone loss and vision decline. Thus, in contrast to the established view, the vascular deficit in neuronal degeneration is not a late consequence of neuronal dysfunction but is present early in the course of disease. These findings further establish the importance of vascular deficit and blood-retina barrier function in neuron-specific loss and highlight it as a target for early therapeutic intervention.

Authors

Elena Ivanova, Nazia M. Alam, Glen T. Prusky, Botir T. Sagdullaev

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts