Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Myocardial fibrosis after adrenergic stimulation as a long-term sequela in a mouse model of Kawasaki disease vasculitis
Harry H. Matundan, … , Masanori Abe, Moshe Arditi
Harry H. Matundan, … , Masanori Abe, Moshe Arditi
Published February 7, 2019
Citation Information: JCI Insight. 2019;4(3):e126279. https://doi.org/10.1172/jci.insight.126279.
View: Text | PDF
Research Article Cardiology Vascular biology

Myocardial fibrosis after adrenergic stimulation as a long-term sequela in a mouse model of Kawasaki disease vasculitis

  • Text
  • PDF
Abstract

Kawasaki disease (KD), the leading cause of acquired cardiac disease among children, is often associated with myocarditis that may lead to long-term myocardial dysfunction and fibrosis. Although those myocardial changes develop during the acute phase, they may persist for decades and closely correlate with long-term myocardial sequelae. Using the Lactobacillus casei cell wall extract–induced (LCWE-induced) KD vasculitis murine model, we investigated long-term cardiovascular sequelae, such as myocardial dysfunction, fibrosis, and coronary microvascular lesions following adrenergic stimuli after established KD vasculitis. We found that adrenergic stimulation with isoproterenol following LCWE-induced KD vasculitis in mice was associated with increased risk of cardiac hypertrophy and myocardial fibrosis, diminished ejection fraction, and increased serum levels of brain natriuretic peptide. Myocardial fibrosis resulting from pharmacologic-induced exercise after KD development was IL-1 signaling dependent and was associated with a significant reduction in myocardial capillary CD31 expression, indicative of a rarefied myocardial capillary bed. These observations suggest that adrenergic stimulation after KD vasculitis may lead to cardiac hypertrophy and bridging fibrosis in the myocardium in the LCWE-induced KD vasculitis mouse model and that this process involves IL-1 signaling and diminished microvascular circulation in the myocardium.

Authors

Harry H. Matundan, Jon Sin, Magali Noval Rivas, Michael C. Fishbein, Thomas J. Lehman, Shuang Chen, Roberta A. Gottlieb, Timothy R. Crother, Masanori Abe, Moshe Arditi

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts