Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Non–fibro-adipogenic pericytes from human embryonic stem cells attenuate degeneration of the chronically injured mouse muscle
Gina M. Mosich, Regina Husman, Paras Shah, Abhinav Sharma, Kevin Rezzadeh, Temidayo Aderibigbe, Vivian J. Hu, Daniel J. McClintick, Genbin Wu, Jonathan D. Gatto, Haibin Xi, April D. Pyle, Bruno Péault, Frank A. Petrigliano, Ayelet Dar
Gina M. Mosich, Regina Husman, Paras Shah, Abhinav Sharma, Kevin Rezzadeh, Temidayo Aderibigbe, Vivian J. Hu, Daniel J. McClintick, Genbin Wu, Jonathan D. Gatto, Haibin Xi, April D. Pyle, Bruno Péault, Frank A. Petrigliano, Ayelet Dar
View: Text | PDF
Research Article Muscle biology Stem cells

Non–fibro-adipogenic pericytes from human embryonic stem cells attenuate degeneration of the chronically injured mouse muscle

  • Text
  • PDF
Abstract

Massive tears of the rotator cuff (RC) are associated with chronic muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. The microenvironment of diseased muscle often impairs efficient engraftment and regenerative activity of transplanted myogenic precursors. Accumulating myofibroblasts and fat cells disrupt the muscle stem cell niche and myogenic cell signaling and deposit excess disorganized connective tissue. Therefore, restoration of the damaged stromal niche with non–fibro-adipogenic cells is a prerequisite to successful repair of an injured RC. We generated from human embryonic stem cells (hES) a potentially novel subset of PDGFR-β+CD146+CD34–CD56– pericytes that lack expression of the fibro-adipogenic cell marker PDGFR-α. Accordingly, the PDGFR-β+PDGFR-α– phenotype typified non–fibro-adipogenic, non-myogenic, pericyte-like derivatives that maintained non–fibro-adipogenic properties when transplanted into chronically injured murine RCs. Although administered hES pericytes inhibited developing fibrosis at early and late stages of progressive muscle degeneration, transplanted PDGFR-β+PDGFR-α+ human muscle-derived fibro-adipogenic progenitors contributed to adipogenesis and greater fibrosis. Additionally, transplanted hES pericytes substantially attenuated muscle atrophy at all tested injection time points after injury. Coinciding with this observation, conditioned medium from cultured hES pericytes rescued atrophic myotubes in vitro. These findings imply that non–fibro-adipogenic hES pericytes recapitulate the myogenic stromal niche and may be used to improve cell-based treatments for chronic muscle disorders.

Authors

Gina M. Mosich, Regina Husman, Paras Shah, Abhinav Sharma, Kevin Rezzadeh, Temidayo Aderibigbe, Vivian J. Hu, Daniel J. McClintick, Genbin Wu, Jonathan D. Gatto, Haibin Xi, April D. Pyle, Bruno Péault, Frank A. Petrigliano, Ayelet Dar

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts