Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia
Irini Manoli, … , Randy J. Chandler, Charles P. Venditti
Irini Manoli, … , Randy J. Chandler, Charles P. Venditti
Published December 6, 2018
Citation Information: JCI Insight. 2018;3(23):e124351. https://doi.org/10.1172/jci.insight.124351.
View: Text | PDF
Research Article Genetics Metabolism

FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia

  • Text
  • PDF
Abstract

Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. Mut–/–;TgINS-MCK-Mut mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver Mut activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker.

Authors

Irini Manoli, Justin R. Sysol, Madeline W. Epping, Lina Li, Cindy Wang, Jennifer L. Sloan, Alexandra Pass, Jack Gagné, Yiouli P. Ktena, Lingli Li, Niraj S. Trivedi, Bazoumana Ouattara, Patricia M. Zerfas, Victoria Hoffmann, Mones Abu-Asab, Maria G. Tsokos, David E. Kleiner, Caterina Garone, Kristina Cusmano-Ozog, Gregory M. Enns, Hilary J. Vernon, Hans C. Andersson, Stephanie Grunewald, Abdel G. Elkahloun, Christiane L. Girard, Jurgen Schnermann, Salvatore DiMauro, Eva Andres-Mateos, Luk H. Vandenberghe, Randy J. Chandler, Charles P. Venditti

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts