Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism
Hakan Cangul, Xiao-Hui Liao, Erik Schoenmakers, Jukka Kero, Sharon Barone, Panudda Srichomkwun, Hideyuki Iwayama, Eva G. Serra, Halil Saglam, Erdal Eren, Omer Tarim, Adeline K. Nicholas, Ilona Zvetkova, Carl A. Anderson, Fiona E. Karet Frankl, Kristien Boelaert, Marja Ojaniemi, Jarmo Jääskeläinen, Konrad Patyra, Christoffer Löf, E. Dillwyn Williams, UK10K Consortium, Manoocher Soleimani, Timothy Barrett, Eamonn R. Maher, V. Krishna Chatterjee, Samuel Refetoff, Nadia Schoenmakers
Hakan Cangul, Xiao-Hui Liao, Erik Schoenmakers, Jukka Kero, Sharon Barone, Panudda Srichomkwun, Hideyuki Iwayama, Eva G. Serra, Halil Saglam, Erdal Eren, Omer Tarim, Adeline K. Nicholas, Ilona Zvetkova, Carl A. Anderson, Fiona E. Karet Frankl, Kristien Boelaert, Marja Ojaniemi, Jarmo Jääskeläinen, Konrad Patyra, Christoffer Löf, E. Dillwyn Williams, UK10K Consortium, Manoocher Soleimani, Timothy Barrett, Eamonn R. Maher, V. Krishna Chatterjee, Samuel Refetoff, Nadia Schoenmakers
View: Text | PDF
Research Article Endocrinology Genetics

Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism

  • Text
  • PDF
Abstract

Defects in genes mediating thyroid hormone biosynthesis result in dyshormonogenic congenital hypothyroidism (CH). Here, we report homozygous truncating mutations in SLC26A7 in 6 unrelated families with goitrous CH and show that goitrous hypothyroidism also occurs in Slc26a7-null mice. In both species, the gene is expressed predominantly in the thyroid gland, and loss of function is associated with impaired availability of iodine for thyroid hormone synthesis, partially corrected in mice by iodine supplementation. SLC26A7 is a member of the same transporter family as SLC26A4 (pendrin), an anion exchanger with affinity for iodide and chloride (among others), whose gene mutations cause congenital deafness and dyshormonogenic goiter. However, in contrast to pendrin, SLC26A7 does not mediate cellular iodide efflux and hearing in affected individuals is normal. We delineate a hitherto unrecognized role for SLC26A7 in thyroid hormone biosynthesis, for which the mechanism remains unclear.

Authors

Hakan Cangul, Xiao-Hui Liao, Erik Schoenmakers, Jukka Kero, Sharon Barone, Panudda Srichomkwun, Hideyuki Iwayama, Eva G. Serra, Halil Saglam, Erdal Eren, Omer Tarim, Adeline K. Nicholas, Ilona Zvetkova, Carl A. Anderson, Fiona E. Karet Frankl, Kristien Boelaert, Marja Ojaniemi, Jarmo Jääskeläinen, Konrad Patyra, Christoffer Löf, E. Dillwyn Williams, UK10K Consortium, Manoocher Soleimani, Timothy Barrett, Eamonn R. Maher, V. Krishna Chatterjee, Samuel Refetoff, Nadia Schoenmakers

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 598 212
PDF 95 85
Figure 258 1
Table 45 0
Supplemental data 70 18
Citation downloads 104 0
Totals 1,170 316
Total Views 1,486
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts