Sepsis-associated encephalopathy manifesting as delirium is a common problem in critical care medicine. In this study, patients that had delirium due to sepsis had significant cognitive impairments at 12–18 months after hospital discharge when compared with controls and Cambridge Neuropsychological Automated Test Battery–standardized scores in spatial recognition memory, pattern recognition memory, and delayed-matching-to-sample tests but not other cognitive functions. A mouse model of S. pneumoniae pneumonia-induced sepsis, which modeled numerous aspects of the human sepsis-associated multiorgan dysfunction, including encephalopathy, also revealed similar deficits in spatial memory but not new task learning. Both humans and mice had large increases in chemokines for myeloid cell recruitment. Intravital imaging of the brains of septic mice revealed increased neutrophil and CCR2+ inflammatory monocyte recruitment (the latter being far more robust), accompanied by subtle microglial activation. Prevention of CCR2+ inflammatory monocyte recruitment, but not neutrophil recruitment, reduced microglial activation and other signs of neuroinflammation and prevented all signs of cognitive impairment after infection. Therefore, therapeutically targeting CCR2+ inflammatory monocytes at the time of sepsis may provide a novel neuroprotective clinical intervention to prevent the development of persistent cognitive impairments.
Graciela Andonegui, Erin L. Zelinski, Courtney L. Schubert, Derrice Knight, Laura A. Craig, Brent W. Winston, Simon C. Spanswick, Björn Petri, Craig N. Jenne, Janice C. Sutherland, Rita Nguyen, Natalie Jayawardena, Margaret M. Kelly, Christopher J. Doig, Robert J. Sutherland, Paul Kubes
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 876 | 268 |
90 | 96 | |
Figure | 374 | 8 |
Table | 52 | 0 |
Supplemental data | 41 | 2 |
Citation downloads | 71 | 0 |
Totals | 1,504 | 374 |
Total Views | 1,878 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.