Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β–treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration.
Marsilio Adriani, Petra Nytrova, Cyprien Mbogning, Signe Hässler, Karel Medek, Poul Erik H. Jensen, Paul Creeke, Clemens Warnke, Kathleen Ingenhoven, Bernhard Hemmer, Claudia Sievers, Raija L.P. Lindberg Gasser, Nicolas Fissolo, Florian Deisenhammer, Zsolt Bocskei, Vincent Mikol, Anna Fogdell-Hahn, Eva Kubala Havrdova, Philippe Broët, Pierre Dönnes, Claudia Mauri, Elizabeth C. Jury, The ABIRISK Consortium
High-throughput flow cytometry identified distinct immune signatures in healthy donor lymphocytes and monocytes.