Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia
Xiaoyang Hua, … , Stephen Tilley, Stanley Perlman
Xiaoyang Hua, … , Stephen Tilley, Stanley Perlman
Published June 7, 2018
Citation Information: JCI Insight. 2018;3(11):e99025. https://doi.org/10.1172/jci.insight.99025.
View: Text | PDF
Research Article Immunology Virology

Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia

  • Text
  • PDF
Abstract

The nasal mucosa is an important component of mucosal immunity. Immunogenic particles in inspired air are known to activate the local nasal mucosal immune system and can lead to sinonasal inflammation; however, little is known about the effect of this activation on the lung immune environment. Here, we showed that nasal inoculation of murine coronavirus (CoV) in the absence of direct lung infection primes the lung immune environment by recruiting activated monocytes (Ly6C+ inflammatory monocytes) and NK cells into the lungs. Unlike infiltration of these cells into directly infected lungs, a process that requires type I IFN signaling, nasally induced infiltration of Ly6C+ inflammatory monocytes into the lungs is IFN-I independent. These activated macrophages ingested antigen and migrated to pulmonary lymph nodes, and enhanced both innate and adaptive immunity after heterologous virus infection. Clinically, such nasal-only inoculation of MHV-1 failed to cause pneumonia but significantly reduced mortality and morbidity of lethal pneumonia caused by severe acute respiratory syndrome CoV (SARS-CoV) or influenza A virus. Together, the data indicate that the nose and upper airway remotely prime the lung immunity to protect the lungs from direct viral infections.

Authors

Xiaoyang Hua, Rahul Vijay, Rudragouda Channappanavar, Jeremiah Athmer, David K. Meyerholz, Nitin Pagedar, Stephen Tilley, Stanley Perlman

×

Figure 2

Nasal administration of MHV-1 remotely recruits Ly6C+ IMs into the lungs.

Options: View larger image (or click on image) Download as PowerPoint
Nasal administration of MHV-1 remotely recruits Ly6C+ IMs into the lungs...
(A) Total cell numbers in the lungs after nasal-only MHV-1 infection. n = 3–7 per group, pooled from 2 independent experiments. No differences were observed. (B and C) Ly6C+CD11b+ cell infiltration in the lungs after nasal infection. Data in B are expressed as percentage of CD45+ cells. **P < 0.01 vs. dpi 0. Gating strategy is shown in C. n = 3–12, pooled from 3 different experiments. (D) Phenotypic analysis of Ly6ChiCD11b+ cells. Blue lines represent the Ly6ChiCD11b+ cells; red lines represent negative or positive controls in each small panel as indicated. Blue-filled represents F4/80 negative control. Ly6ChiCD11b+ cells were Ly6G–CD19–CD3-SiglecF–NKp46–F4/80int. Neut, neutrophils; T, T cells; B, B cells; NK, NK cells; aM, alveolar macrophages. (E–G) Localization of Ly6C+ IMs in the lungs. BALB/c mice were intranasally infected with MHV-1 (104 PFU in 2 μl MEM, 1 μl/nostril) or vehicle, and were then sacrificed at 2 dpi. The left lungs were clamped, and the right pulmonary vessels were then exclusively perfused via the right ventricle (E). The frequencies of Ly6C+ IMs in both left and right lungs were then analyzed and expressed as percentage of CD45+ singlet cells (F and G). **P < 0.01 vs. controls. n = 3 per group.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts