Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant
Meagan A. Jacoby, Eric J. Duncavage, Gue Su Chang, Christopher A. Miller, Jin Shao, Kevin Elliott, Joshua Robinson, Robert S. Fulton, Catrina C. Fronick, Michelle O’Laughlin, Sharon E. Heath, Iskra Pusic, John S. Welch, Daniel C. Link, John F. DiPersio, Peter Westervelt, Timothy J. Ley, Timothy A. Graubert, Matthew J. Walter
Meagan A. Jacoby, Eric J. Duncavage, Gue Su Chang, Christopher A. Miller, Jin Shao, Kevin Elliott, Joshua Robinson, Robert S. Fulton, Catrina C. Fronick, Michelle O’Laughlin, Sharon E. Heath, Iskra Pusic, John S. Welch, Daniel C. Link, John F. DiPersio, Peter Westervelt, Timothy J. Ley, Timothy A. Graubert, Matthew J. Walter
View: Text | PDF
Research Article Genetics Hematology

Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant

  • Text
  • PDF
Abstract

Allogeneic hematopoietic cell transplantation (alloHCT) is a potentially curative treatment for myelodysplastic syndromes (MDS), but patients who relapse after transplant have poor outcomes. In order to understand the contribution of tumor clonal evolution to disease progression,we applied exome and error-corrected targeted sequencing coupled with copy number analysis to comprehensively define changes in the clonal architecture of MDS in response to therapy using 51 serially acquired tumor samples from 9 patients who progressed after an alloHCT. We show that small subclones before alloHCT can drive progression after alloHCT. Notably, at least one subclone expanded or emerged at progression in all patients. Newly acquired structural variants (SVs) were present in an emergent/expanding subclone in 8 of 9 patients at progression, implicating the acquisition of SVs as important late subclonal progression events. In addition, pretransplant therapy with azacitidine likely influenced the mutation spectrum and evolution of emergent subclones after alloHCT. Although subclone evolution is common, founding clone mutations are always present at progression and could be detected in the bone marrow as early as 30 and/or 100 days after alloHCT in 6 of 8 (75%) patients, often prior to clinical progression. In conclusion, MDS progression after alloHCT is characterized by subclonal expansion and evolution, which can be influenced by pretransplant therapy.

Authors

Meagan A. Jacoby, Eric J. Duncavage, Gue Su Chang, Christopher A. Miller, Jin Shao, Kevin Elliott, Joshua Robinson, Robert S. Fulton, Catrina C. Fronick, Michelle O’Laughlin, Sharon E. Heath, Iskra Pusic, John S. Welch, Daniel C. Link, John F. DiPersio, Peter Westervelt, Timothy J. Ley, Timothy A. Graubert, Matthew J. Walter

×

Figure 5

Serial tracking of tumor burden during therapy and after allogeneic hematopoietic cell transplant.

Options: View larger image (or click on image) Download as PowerPoint
Serial tracking of tumor burden during therapy and after allogeneic hema...
(A) Somatic mutations (SNVs/indels) identified by standard sequencing were interrogated in samples day 30 and day 100 after transplant by ultra-deep error-corrected sequencing. Six of eight patients had detectable variants at day 30 and/or day 100. Samples with no detectable variants are shown in red at day 30 or day 100. (B) Detection of mutation VAFs in UPN 145094 at serial time points during therapy with standard sequencing. VAFs represent the summation of read counts from exome and standard validation sequencing when available. Days are numbered relative to the days after first sampling (day 0), and selected days after transplant are shown in parentheses. The inset shows serial tracking of somatic mutations at various times after transplant for UPN 145094 samples by ultra-deep error-corrected sequencing. Variants that are detectable are shown in black, and undetectable variants are shown in red. Mutations were detected at days 196 and 242 (days 30 and 100 after transplant, respectively) and day 928 by error-corrected sequencing. RMG, recurrently mutated genes (i.e., 285 genes known to be recurrently mutated in myeloid malignancies).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts