Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies
David A. Slatter, … , Peter W. Collins, Valerie B. O’Donnell
David A. Slatter, … , Peter W. Collins, Valerie B. O’Donnell
Published March 22, 2018
Citation Information: JCI Insight. 2018;3(6):e98459. https://doi.org/10.1172/jci.insight.98459.
View: Text | PDF
Research Article Hematology

Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies

  • Text
  • PDF
Abstract

Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed.

Authors

David A. Slatter, Charles L. Percy, Keith Allen-Redpath, Joshua M. Gajsiewicz, Nick J. Brooks, Aled Clayton, Victoria J. Tyrrell, Marcela Rosas, Sarah N. Lauder, Andrew Watson, Maria Dul, Yoel Garcia-Diaz, Maceler Aldrovandi, Meike Heurich, Judith Hall, James H. Morrissey, Sebastien Lacroix-Desmazes, Sandrine Delignat, P. Vincent Jenkins, Peter W. Collins, Valerie B. O’Donnell

×

Full Text PDF | Download (5.34 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts