Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair
Hiroko Ishiwata-Endo, … , Elizabeth Murphy, Joel Moss
Hiroko Ishiwata-Endo, … , Elizabeth Murphy, Joel Moss
Published November 15, 2018
Citation Information: JCI Insight. 2018;3(22):e97898. https://doi.org/10.1172/jci.insight.97898.
View: Text | PDF
Research Article Cardiology Muscle biology

Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair

  • Text
  • PDF
Abstract

Mono-ADP-ribosylation of an (arginine) protein catalyzed by ADP-ribosyltransferase 1 (ART1) — i.e., transfer of ADP-ribose from NAD to arginine — is reversed by ADP-ribosylarginine hydrolase 1 (ARH1) cleavage of the ADP-ribose–arginine bond. ARH1-deficient mice developed cardiomyopathy with myocardial fibrosis, decreased myocardial function under dobutamine stress, and increased susceptibility to ischemia/reperfusion injury. The membrane repair protein TRIM72 was identified as a substrate for ART1 and ARH1; ADP-ribosylated TRIM72 levels were greater in ARH1-deficient mice following ischemia/reperfusion injury. To understand better the role of TRIM72 and ADP-ribosylation, we used C2C12 myocytes. ARH1 knockdown in C2C12 myocytes increased ADP-ribosylation of TRIM72 and delayed wound healing in a scratch assay. Mutant TRIM72 (R207K, R260K) that is not ADP-ribosylated interfered with assembly of TRIM72 repair complexes at a site of laser-induced injury. The regulatory enzymes ART1 and ARH1 and their substrate TRIM72 were found in multiple complexes, which were coimmunoprecipitated from mouse heart lysates. In addition, the mono-ADP-ribosylation inhibitors vitamin K1 and novobiocin inhibited oligomerization of TRIM72, the mechanism by which TRIM72 is recruited to the site of injury. We propose that a mono-ADP-ribosylation cycle involving recruitment of TRIM72 and other regulatory factors to sites of membrane damage is critical for membrane repair and wound healing following myocardial injury.

Authors

Hiroko Ishiwata-Endo, Jiro Kato, Akihiko Tonouchi, Youn Wook Chung, Junhui Sun, Linda A. Stevens, Jianfeng Zhu, Angel M. Aponte, Danielle A. Springer, Hong San, Kazuyo Takeda, Zu-Xi Yu, Victoria Hoffmann, Elizabeth Murphy, Joel Moss

×

Full Text PDF

Download PDF (7.72 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts