Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury
Honglu Chao, Tamil S. Anthonymuthu, Elizabeth M. Kenny, Andrew A. Amoscato, Laura K. Cole, Grant M. Hatch, Jing Ji, Valerian E. Kagan, Hülya Bayır
Honglu Chao, Tamil S. Anthonymuthu, Elizabeth M. Kenny, Andrew A. Amoscato, Laura K. Cole, Grant M. Hatch, Jing Ji, Valerian E. Kagan, Hülya Bayır
View: Text | PDF
Research Article Cell biology Neuroscience

Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury

  • Text
  • PDF
Abstract

Mechanical injury to the brain triggers multiple biochemical events whose specific contributions to the pathogenesis define clinical manifestations and the overall outcome. Among many factors, mitochondrial injury has recently attracted much attention due to the importance of the organelle for bioenergetics as well as intra- and extracellular signaling and cell death. Assuming the essentiality of a mitochondria-unique phospholipid, cardiolipin (CL), for the structural and functional organization of mitochondria, here we applied global (phospho) lipidomics and redox lipidomics to reveal and identify CL modifications during controlled cortical impact (CCI). We revealed 2 major pathways activated in the CCI-injured brain as time-specific responses: early accumulation of oxidized CL (CLox) products was followed by hydrolytic reactions yielding monolyso-CLs (mCLs) and free fatty acids. To quantitatively assess possible specific roles of peroxidation and hydrolysis of mitochondrial CL, we performed comparative studies of CL modifications using an animal model of Barth syndrome where deficiency of CL reacylation (Tafazzin [Taz] deficiency) was associated exclusively with the accumulation of mCLs (but not CLox). By comparing the in vitro and in vivo results with genetic manipulation of major CL-, CLox-, and mCL-metabolizing enzymes, calcium-independent phospholipase A2γ and Taz, we concluded that the 2 processes — CL oxidation and CL hydrolysis — act as mutually synergistically enhancing components of the pathogenic mechanism of mitochondrial injury in traumatic brain injury. This emphasizes the need for combined therapeutic approaches preventing the formation of both CLox and mCL.

Authors

Honglu Chao, Tamil S. Anthonymuthu, Elizabeth M. Kenny, Andrew A. Amoscato, Laura K. Cole, Grant M. Hatch, Jing Ji, Valerian E. Kagan, Hülya Bayır

×

Figure 2

Correlation analysis of changes in CL after TBI.

Options: View larger image (or click on image) Download as PowerPoint
Correlation analysis of changes in CL after TBI.
(A) Correlation of chan...
(A) Correlation of changes in CL content between control and 1-, 4-, or 24-hour samples and the total number of double bonds. (B) Chord diagram showing the correlation between CLox and mCLs. The connecting chord represents a Spearman’s correlation coefficient greater than 0.6 between CLox and mCLs. Values are average from 4 animals.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts