Heterozygous chromosomal inversions suppress recombination. Therefore, they may potentially influence recombination-associated phenotypes of human diseases, but no studies have verified this hypothesis. Here, we describe a 35-year-old man with severe congenital ichthyosis. Mutation analysis revealed a heterozygous splice-site mutation, c.1374-2A>G (p.Ser458Argfs*120), in KRT10 on 17q21.2. This mutation was previously reported in patients with ichthyosis with confetti type I (IWC-I), a prominent skin disease characterized by the frequent occurrence of recombination-induced reversion of pathogenic mutations. Intriguingly, the number of revertant skin areas in this patient is considerably reduced compared with typical IWC-I cases. G-banded karyotyping revealed that the patient harbors a heterozygous nonpathogenic inversion, inv(17)(p13q12), whose long-arm breakpoint was subsequently refined to chromosomal positions (chr17: 36,544,407–36,639,830) via FISH. Collectively, the only chance of revertant mosaicism through somatic recombination appears to involve recombination between the KRT10 mutation and the inversion breakpoint. Indeed, in the examined revertant spot, the KRT10 mutation was diminished by somatic recombination starting from chromosomal positions (chr17: 36,915,505–37,060,285) on 17q12. This study provides the first evidence to our knowledge implicating chromosomal inversions as a potential modifier of clinical phenotypes. Furthermore, the reduced occurrence of revertant spots in the recombination-suppressed patient suggests that somatic recombination is the main mechanism of revertant mosaicism in IWC-I.
Toshifumi Nomura, Shotaro Suzuki, Toshinari Miyauchi, Masae Takeda, Satoru Shinkuma, Yasuyuki Fujita, Wataru Nishie, Masashi Akiyama, Hiroshi Shimizu
A copy-neutral LOH on 17q.