Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A glucose-responsive insulin therapy protects animals against hypoglycemia
Ruojing Yang, … , David E. Kelley, James Mu
Ruojing Yang, … , David E. Kelley, James Mu
Published January 11, 2018
Citation Information: JCI Insight. 2018;3(1):e97476. https://doi.org/10.1172/jci.insight.97476.
View: Text | PDF
Research Article Endocrinology Metabolism

A glucose-responsive insulin therapy protects animals against hypoglycemia

  • Text
  • PDF
Abstract

Hypoglycemia is commonly associated with insulin therapy, limiting both its safety and efficacy. The concept of modifying insulin to render its glucose-responsive release from an injection depot (of an insulin complexed exogenously with a recombinant lectin) was proposed approximately 4 decades ago but has been challenging to achieve. Data presented here demonstrate that mannosylated insulin analogs can undergo an additional route of clearance as result of their interaction with endogenous mannose receptor (MR), and this can occur in a glucose-dependent fashion, with increased binding to MR at low glucose. Yet, these analogs retain capacity for binding to the insulin receptor (IR). When the blood glucose level is elevated, as in individuals with diabetes mellitus, MR binding diminishes due to glucose competition, leading to reduced MR-mediated clearance and increased partitioning for IR binding and consequent glucose lowering. These studies demonstrate that a glucose-dependent locus of insulin clearance and, hence, insulin action can be achieved by targeting MR and IR concurrently.

Authors

Ruojing Yang, Margaret Wu, Songnian Lin, Ravi P. Nargund, Xinghai Li, Theresa Kelly, Lin Yan, Ge Dai, Ying Qian, Qing Dallas-yang, Paul A. Fischer, Yan Cui, Xiaolan Shen, Pei Huo, Danqing Dennis Feng, Mark D. Erion, David E. Kelley, James Mu

×

Full Text PDF

Download PDF (6.05 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts