Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut
Rachel Mak’Anyengo, … , Max Schnurr, Christian Bauer
Rachel Mak’Anyengo, … , Max Schnurr, Christian Bauer
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e96322. https://doi.org/10.1172/jci.insight.96322.
View: Text | PDF
Research Article Gastroenterology Immunology

Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut

  • Text
  • PDF
Abstract

Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3–/– mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3–/– phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β.

Authors

Rachel Mak’Anyengo, Peter Duewell, Cornelia Reichl, Christine Hörth, Hans‑Anton Lehr, Sandra Fischer, Thomas Clavel, Gerald Denk, Simon Hohenester, Sebastian Kobold, Stefan Endres, Max Schnurr, Christian Bauer

×

Full Text PDF | Download (2.38 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts