Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3–/– mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3–/– phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β.
Rachel Mak’Anyengo, Peter Duewell, Cornelia Reichl, Christine Hörth, Hans‑Anton Lehr, Sandra Fischer, Thomas Clavel, Gerald Denk, Simon Hohenester, Sebastian Kobold, Stefan Endres, Max Schnurr, Christian Bauer
NLRP3-mediated IL-1β drives colitogenic Th17 immunity and regulates local DC phenotype by balancing GM-CSF and FLT3L production by T cells.