Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Brugada syndrome trafficking–defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels
Marta Pérez-Hernández, Marcos Matamoros, Silvia Alfayate, Paloma Nieto-Marín, Raquel G. Utrilla, David Tinaquero, Raquel de Andrés, Teresa Crespo, Daniela Ponce-Balbuena, B. Cicero Willis, Eric N. Jiménez-Vazquez, Guadalupe Guerrero-Serna, Andre M. da Rocha, Katherine Campbell, Todd J. Herron, F. Javier Díez-Guerra, Juan Tamargo, José Jalife, Ricardo Caballero, Eva Delpón
Marta Pérez-Hernández, Marcos Matamoros, Silvia Alfayate, Paloma Nieto-Marín, Raquel G. Utrilla, David Tinaquero, Raquel de Andrés, Teresa Crespo, Daniela Ponce-Balbuena, B. Cicero Willis, Eric N. Jiménez-Vazquez, Guadalupe Guerrero-Serna, Andre M. da Rocha, Katherine Campbell, Todd J. Herron, F. Javier Díez-Guerra, Juan Tamargo, José Jalife, Ricardo Caballero, Eva Delpón
View: Text | PDF
Research Article Cardiology Cell biology

Brugada syndrome trafficking–defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels

  • Text
  • PDF
Abstract

Cardiac Nav1.5 and Kir2.1–2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems — rat ventricular cardiomyocytes and human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) — demonstrated that endoplasmic reticulum (ER) trafficking–defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking–defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking–defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.

Authors

Marta Pérez-Hernández, Marcos Matamoros, Silvia Alfayate, Paloma Nieto-Marín, Raquel G. Utrilla, David Tinaquero, Raquel de Andrés, Teresa Crespo, Daniela Ponce-Balbuena, B. Cicero Willis, Eric N. Jiménez-Vazquez, Guadalupe Guerrero-Serna, Andre M. da Rocha, Katherine Campbell, Todd J. Herron, F. Javier Díez-Guerra, Juan Tamargo, José Jalife, Ricardo Caballero, Eva Delpón

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 928 97
PDF 122 37
Figure 480 2
Supplemental data 38 3
Citation downloads 112 0
Totals 1,680 139
Total Views 1,819
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts