Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Brugada syndrome trafficking–defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels
Marta Pérez-Hernández, Marcos Matamoros, Silvia Alfayate, Paloma Nieto-Marín, Raquel G. Utrilla, David Tinaquero, Raquel de Andrés, Teresa Crespo, Daniela Ponce-Balbuena, B. Cicero Willis, Eric N. Jiménez-Vazquez, Guadalupe Guerrero-Serna, Andre M. da Rocha, Katherine Campbell, Todd J. Herron, F. Javier Díez-Guerra, Juan Tamargo, José Jalife, Ricardo Caballero, Eva Delpón
Marta Pérez-Hernández, Marcos Matamoros, Silvia Alfayate, Paloma Nieto-Marín, Raquel G. Utrilla, David Tinaquero, Raquel de Andrés, Teresa Crespo, Daniela Ponce-Balbuena, B. Cicero Willis, Eric N. Jiménez-Vazquez, Guadalupe Guerrero-Serna, Andre M. da Rocha, Katherine Campbell, Todd J. Herron, F. Javier Díez-Guerra, Juan Tamargo, José Jalife, Ricardo Caballero, Eva Delpón
View: Text | PDF
Research Article Cardiology Cell biology

Brugada syndrome trafficking–defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels

  • Text
  • PDF
Abstract

Cardiac Nav1.5 and Kir2.1–2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems — rat ventricular cardiomyocytes and human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) — demonstrated that endoplasmic reticulum (ER) trafficking–defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking–defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking–defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.

Authors

Marta Pérez-Hernández, Marcos Matamoros, Silvia Alfayate, Paloma Nieto-Marín, Raquel G. Utrilla, David Tinaquero, Raquel de Andrés, Teresa Crespo, Daniela Ponce-Balbuena, B. Cicero Willis, Eric N. Jiménez-Vazquez, Guadalupe Guerrero-Serna, Andre M. da Rocha, Katherine Campbell, Todd J. Herron, F. Javier Díez-Guerra, Juan Tamargo, José Jalife, Ricardo Caballero, Eva Delpón

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (3.43 MB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts