Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Targeting the gut microbiome to treat the osteoarthritis of obesity
Eric M. Schott, … , Robert A. Mooney, Michael J. Zuscik
Eric M. Schott, … , Robert A. Mooney, Michael J. Zuscik
Published April 19, 2018
Citation Information: JCI Insight. 2018;3(8):e95997. https://doi.org/10.1172/jci.insight.95997.
View: Text | PDF
Research Article Inflammation Microbiology

Targeting the gut microbiome to treat the osteoarthritis of obesity

  • Text
  • PDF
Abstract

Obesity is a risk factor for osteoarthritis (OA), the greatest cause of disability in the US. The impact of obesity on OA is driven by systemic inflammation, and increased systemic inflammation is now understood to be caused by gut microbiome dysbiosis. Oligofructose, a nondigestible prebiotic fiber, can restore a lean gut microbial community profile in the context of obesity, suggesting a potentially novel approach to treat the OA of obesity. Here, we report that — compared with the lean murine gut — obesity is associated with loss of beneficial Bifidobacteria, while key proinflammatory species gain in abundance. A downstream systemic inflammatory signature culminates with macrophage migration to the synovium and accelerated knee OA. Oligofructose supplementation restores the lean gut microbiome in obese mice, in part, by supporting key commensal microflora, particularly Bifidobacterium pseudolongum. This is associated with reduced inflammation in the colon, circulation, and knee and protection from OA. This observation of a gut microbiome–OA connection sets the stage for discovery of potentially new OA therapeutics involving strategic manipulation of specific microbial species inhabiting the intestinal space.

Authors

Eric M. Schott, Christopher W. Farnsworth, Alex Grier, Jacquelyn A. Lillis, Sarah Soniwala, Gregory H. Dadourian, Richard D. Bell, Madison L. Doolittle, David A. Villani, Hani Awad, John P. Ketz, Fadia Kamal, Cheryl Ackert-Bicknell, John M. Ashton, Steven R. Gill, Robert A. Mooney, Michael J. Zuscik

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 7,596 728
PDF 334 172
Figure 723 17
Supplemental data 125 8
Citation downloads 92 0
Totals 8,870 925
Total Views 9,795
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts