Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias
Marc Gauthier, … , Sally E. Wenzel, Anuradha Ray
Marc Gauthier, … , Sally E. Wenzel, Anuradha Ray
Published July 6, 2017
Citation Information: JCI Insight. 2017;2(13):e94580. https://doi.org/10.1172/jci.insight.94580.
View: Text | PDF
Research Article Immunology Pulmonology

Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias

  • Text
  • PDF
Abstract

We previously showed that Th1/type 1 inflammation marked by increased IFN-γ levels in the airways can be appreciated in 50% of patients with severe asthma, despite high dose corticosteroid (CS) treatment. We hypothesized that a downstream target of IFN-γ, CXCL10, which recruits Th1 cells via the cognate receptor CXCR3, is an important contributor to Th1high asthma and CS unresponsiveness. We show high levels of CXCL10 mRNA closely associated with IFNG levels in the BAL cells of 50% of severe asthmatics and also in the airways of mice subjected to a severe asthma model, both in the context of high-dose CS treatment. The inability of CS to dampen IFNG or CXCL10 expression was not because of impaired nuclear translocation of the glucocorticoid receptor (GR) or its transactivational functions. Rather, in the presence of CS and IFN-γ, STAT1 and GR were recruited on critical regulatory elements in the endogenous CXCL10 promoter in monocytes, albeit without any abatement of CXCL10 gene expression. High CXCL10 gene expression was also associated with a mast cell signature in both humans and mice, CXCR3 being also expressed by mast cells. These findings suggest that the IFN-γ–CXCL10 axis plays a central role in persistent type 1 inflammation that may be facilitated by CS therapy through GR-STAT1 cooperation converging on the CXCL10 promoter.

Authors

Marc Gauthier, Krishnendu Chakraborty, Timothy B. Oriss, Mahesh Raundhal, Sudipta Das, Jie Chen, Rachael Huff, Ayan Sinha, Merritt Fajt, Prabir Ray, Sally E. Wenzel, Anuradha Ray

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (403.08 KB)

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts