Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction
Naveed Akbar, … , Daniel C. Anthony, Robin P. Choudhury
Naveed Akbar, … , Daniel C. Anthony, Robin P. Choudhury
Published September 7, 2017
Citation Information: JCI Insight. 2017;2(17):e93344. https://doi.org/10.1172/jci.insight.93344.
View: Text | PDF
Research Article Cardiology Vascular biology

Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction

  • Text
  • PDF
Abstract

Transcriptionally activated monocytes are recruited to the heart after acute myocardial infarction (AMI). After AMI in mice and humans, the number of extracellular vesicles (EVs) increased acutely. In humans, EV number correlated closely with the extent of myocardial injury. We hypothesized that EVs mediate splenic monocyte mobilization and program transcription following AMI. Some plasma EVs bear endothelial cell (EC) integrins, and both proinflammatory stimulation of ECs and AMI significantly increased VCAM-1–positive EV release. Injected EC-EVs localized to the spleen and interacted with, and mobilized, splenic monocytes in otherwise naive, healthy animals. Analysis of human plasma EV-associated miRNA showed 12 markedly enriched miRNAs after AMI; functional enrichment analyses identified 1,869 putative mRNA targets, which regulate relevant cellular functions (e.g., proliferation and cell movement). Furthermore, gene ontology termed positive chemotaxis as the most enriched pathway for the miRNA-mRNA targets. Among the identified EV miRNAs, EC-associated miRNA-126-3p and -5p were highly regulated after AMI. miRNA-126-3p and -5p regulate cell adhesion– and chemotaxis-associated genes, including the negative regulator of cell motility, plexin-B2. EC-EV exposure significantly downregulated plexin-B2 mRNA in monocytes and upregulated motility integrin ITGB2. These findings identify EVs as a possible novel signaling pathway by linking ischemic myocardium with monocyte mobilization and transcriptional activation following AMI.

Authors

Naveed Akbar, Janet E. Digby, Thomas J. Cahill, Abhijeet N. Tavare, Alastair L. Corbin, Sushant Saluja, Sam Dawkins, Laurienne Edgar, Nadiia Rawlings, Klemen Ziberna, Eileen McNeill, Oxford Acute Myocardial Infarction (OxAMI) Study, Errin Johnson, Alaa A. Aljabali, Rebecca A. Dragovic, Mala Rohling, T. Grant Belgard, Irina A. Udalova, David R. Greaves, Keith M. Channon, Paul R. Riley, Daniel C. Anthony, Robin P. Choudhury

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 788 220
PDF 135 45
Figure 259 8
Table 95 0
Supplemental data 43 1
Citation downloads 86 0
Totals 1,406 274
Total Views 1,680
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts