Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

MicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin
Kristin N. Heller, Joshua T. Mendell, Jerry R. Mendell, Louise R. Rodino-Klapac
Kristin N. Heller, Joshua T. Mendell, Jerry R. Mendell, Louise R. Rodino-Klapac
View: Text | PDF
Research Article Muscle biology Therapeutics

MicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin

  • Text
  • PDF
Abstract

Duchenne muscular dystrophy (DMD) is caused by dystrophin deficiency resulting in progressive muscle weakness and fibrotic scarring. Muscle fibrosis impairs blood flow, hampering muscle repair and regeneration. Irrespective of the success of gene restoration, functional improvement is limited without reducing fibrosis. The levels of miR-29c, a known regulator of collagen, are reduced in DMD. Our goal is to develop translational, antifibrotic therapy by overexpressing miR-29c. We injected the gastrocnemius muscle with either self-complementary AAV.CMV.miR-29c or single-stranded AAV.MCK.micro-dystrophin alone or in combination in the mdx/utrn+/– mouse, a DMD mouse model. Treatment of 3-month-old mdx/utrn+/– mice with AAV.miR-29c showed a reduction in collagen and increased absolute and specific force compared with untreated animals, but neither parameter reached WT levels. Combinatorial gene delivery in 3-month-old mdx/utrn+/– mice further decreased fibrosis, and showed a reduction of transcript levels for Col1A, Col3A, fibronectin, and Tgfb1. In addition, absolute and specific force was normalized and equivalent to WT. However, protection against eccentric contraction fell short of WT levels at this time point. When this same mouse model was treated with miR-29c/micro-dystrophin combinatorial therapy at 1 month of age, there was complete normalization of specific and absolute force and protection against eccentric contraction–induced injury was comparable to WT. These findings highlight the potential for miR-29c as an important addition to the armamentarium for translational gene therapy, especially when used in combination with micro-dystrophin in DMD.

Authors

Kristin N. Heller, Joshua T. Mendell, Jerry R. Mendell, Louise R. Rodino-Klapac

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 522 80
PDF 132 32
Figure 496 6
Supplemental data 53 1
Citation downloads 143 0
Totals 1,346 119
Total Views 1,465
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts