Abstract

Tristetraprolin (TTP, encoded by the Zfp36 gene) regulates the mRNA stability of several important cytokines. Due to the critical role of this RNA-binding protein in the control of inflammation, TTP deficiency leads to the spontaneous development of a complex inflammatory syndrome. So far, this phenotype has been largely attributed to dysregulated production of TNF and IL‑23 by myeloid cells, such as macrophages or DCs. Here, we generated mice with conditional deletion of TTP in keratinocytes (Zfp36fl/flK14-Cre mice, referred to herein as Zfp36ΔEP mice). Unlike DC-restricted (CD11c-Cre) or myeloid cell–restricted (LysM-Cre) TTP ablation, these mice developed exacerbated inflammation in the imiquimod-induced psoriasis model. Furthermore, Zfp36ΔEP mice progressively developed a spontaneous pathology with systemic inflammation, psoriatic-like skin lesions, and dactylitis. Finally, we provide evidence that keratinocyte-derived TNF production drives these different pathological features. In summary, these findings expand current views on the initiation of psoriasis and related arthritis by revealing the keratinocyte-intrinsic role of TTP.

Authors

Mathieu Andrianne, Assiya Assabban, Caroline La, Denis Mogilenko, Delphine Staumont Salle, Sébastien Fleury, Gilles Doumont, Gaëtan Van Simaeys, Sergei A. Nedospasov, Perry J. Blackshear, David Dombrowicz, Stanislas Goriely, Laurye Van Maele

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement