Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Delayed decompression exacerbates ischemia-reperfusion injury in cervical compressive myelopathy
Pia M. Vidal, Spyridon K. Karadimas, Antigona Ulndreaj, Alex M. Laliberte, Lindsay Tetreault, Stefania Forner, Jian Wang, Warren D. Foltz, Michael G. Fehlings
Pia M. Vidal, Spyridon K. Karadimas, Antigona Ulndreaj, Alex M. Laliberte, Lindsay Tetreault, Stefania Forner, Jian Wang, Warren D. Foltz, Michael G. Fehlings
View: Text | PDF
Research Article Inflammation Neuroscience

Delayed decompression exacerbates ischemia-reperfusion injury in cervical compressive myelopathy

  • Text
  • PDF
Abstract

Degenerative cervical myelopathy (DCM) is the most common progressive nontraumatic spinal cord injury. The most common recommended treatment is surgical decompression, although the optimal timing of intervention is an area of ongoing debate. The primary objective of this study was to assess whether a delay in decompression could influence the extent of ischemia-reperfusion injury and alter the trajectory of outcome in DCM. Using a DCM mouse model, we show that decompression acutely led to a 1.5- to 2-fold increase in levels of inflammatory cytokines within the spinal cord. Delayed decompression was associated with exacerbated reperfusion injury, astrogliosis, and poorer neurological recovery. Additionally, delayed decompression was associated with prolonged elevation of inflammatory cytokines and an exacerbated peripheral monocytic inflammatory response (P < 0.01 and 0.001). In contrast, early decompression led to resolution of reperfusion-mediated inflammation, neurological improvement, and reduced hyperalgesia. Similar findings were observed in subjects from the CSM AOSpine North America and International studies, where delayed decompressive surgery resulted in poorer neurological improvement compared with patients with an earlier intervention. Our data demonstrate that delayed surgical decompression for DCM exacerbates reperfusion injury and is associated with ongoing enhanced levels of cytokine expression, microglia activation, and astrogliosis, and paralleled with poorer neurological recovery.

Authors

Pia M. Vidal, Spyridon K. Karadimas, Antigona Ulndreaj, Alex M. Laliberte, Lindsay Tetreault, Stefania Forner, Jian Wang, Warren D. Foltz, Michael G. Fehlings

×

Figure 3

Delayed decompression increases long-term blood flow in the spinal cord.

Options: View larger image (or click on image) Download as PowerPoint
Delayed decompression increases long-term blood flow in the spinal cord....
(A) Schematic representation of the technique that measures spinal cord blood flow using fluorescent microparticles injected into the mouse heart. Fluorescence absorbance of microparticles in blood and spinal cord was measured and the obtained values were normalized to a standard curve. (B) At 5 weeks after early decompression, blood flow reached 33.2 ± 20.8 ml/min/100 g in the DCM-E + Dec group, whereas animals in the DCM-E group had a blood flow of 23.2 ±12.2 ml/min/100 g. Age-matched naive animals had blood flow values of 42.1 ± 13.5 ml/min/100 g. Naive animals (n = 6), DCM-E (n = 7), DCM-E + Dec (n = 6). (C) At 5 weeks after delayed surgical decompression, blood flow was significantly increased to 55.10 ml/min/100 g in the DCM-D + Dec group compared with 24.2 ml/min/100 g in the DCM-D group. *P < 0.05, Mann-Whitney U test. Age-matched naive animals presented blood flow values of 40 ml/min/100 g ± 13.3 ml/min/100 g. Naive animals (n = 6), DCM-D (n = 5), and DCM-D + Dec (n = 6). All data are presented as mean ± SEM. DCM, degenerative cervical myelopathy; Dec, decompression; DCM-E, age-matched early sham decompressed group; DCM-D, age-matched delayed sham decompressed group.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts