Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease
Rashmi Chandra, Annie Hiniker, Yien-Ming Kuo, Robert L. Nussbaum, Rodger A. Liddle
Rashmi Chandra, Annie Hiniker, Yien-Ming Kuo, Robert L. Nussbaum, Rodger A. Liddle
View: Text | PDF
Research Article Gastroenterology Neuroscience

α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease

  • Text
  • PDF
Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disease with devastating clinical manifestations. In PD, neuronal death is associated with intracellular aggregates of the neuronal protein α-synuclein known as Lewy bodies. Although the cause of sporadic PD is not well understood, abundant clinical and pathological evidence show that misfolded α-synuclein is found in enteric nerves before it appears in the brain. This suggests a model in which PD pathology originates in the gut and spreads to the central nervous system via cell-to-cell prion-like propagation, such that transfer of misfolded α-synuclein initiates misfolding of native α-synuclein in recipient cells. We recently discovered that enteroendocrine cells (EECs), which are part of the gut epithelium and directly face the gut lumen, also possess many neuron-like properties and connect to enteric nerves. In this report, we demonstrate that α-synuclein is expressed in the EEC line, STC-1, and native EECs of mouse and human intestine. Furthermore, α-synuclein–containing EECs directly connect to α-synuclein–containing nerves, forming a neural circuit between the gut and the nervous system in which toxins or other environmental influences in the gut lumen could affect α-synuclein folding in the EECs, thereby beginning a process by which misfolded α-synuclein could propagate from the gut epithelium to the brain.

Authors

Rashmi Chandra, Annie Hiniker, Yien-Ming Kuo, Robert L. Nussbaum, Rodger A. Liddle

×

Figure 10

Hypothetical pathway for pathogenic migration of α-synuclein in the gut.

Options: View larger image (or click on image) Download as PowerPoint
Hypothetical pathway for pathogenic migration of α-synuclein in the gut....
The apical surface of enteroendocrine cells (EECs) is exposed to the lumen and thus is in contact with ingested toxins and metabolites produced by gut microbes. The basolateral surface of EECs is in contact with enteric nerves and glia. We propose that toxin uptake by EEC can cause aggregation of α-synuclein inside these cells and this aggregated protein can migrate to enteric nerves, thereby initiating a pathogenic cascade leading to α-synucleinopathies.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts