Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Adipocyte JAK2 mediates growth hormone–induced hepatic insulin resistance
Kevin C. Corbit, João Paulo G. Camporez, Jennifer L. Tran, Camella G. Wilson, Dylan A. Lowe, Sarah M. Nordstrom, Kirthana Ganeshan, Rachel J. Perry, Gerald I. Shulman, Michael J. Jurczak, Ethan J. Weiss
Kevin C. Corbit, João Paulo G. Camporez, Jennifer L. Tran, Camella G. Wilson, Dylan A. Lowe, Sarah M. Nordstrom, Kirthana Ganeshan, Rachel J. Perry, Gerald I. Shulman, Michael J. Jurczak, Ethan J. Weiss
View: Text | PDF
Research Article Endocrinology Metabolism

Adipocyte JAK2 mediates growth hormone–induced hepatic insulin resistance

  • Text
  • PDF
Abstract

For nearly 100 years, growth hormone (GH) has been known to affect insulin sensitivity and risk of diabetes. However, the tissue governing the effects of GH signaling on insulin and glucose homeostasis remains unknown. Excess GH reduces fat mass and insulin sensitivity. Conversely, GH insensitivity (GHI) is associated with increased adiposity, augmented insulin sensitivity, and protection from diabetes. Here, we induce adipocyte-specific GHI through conditional deletion of Jak2 (JAK2A), an obligate transducer of GH signaling. Similar to whole-body GHI, JAK2A mice had increased adiposity and extreme insulin sensitivity. Loss of adipocyte Jak2 augmented hepatic insulin sensitivity and conferred resistance to diet-induced metabolic stress without overt changes in circulating fatty acids. While GH injections induced hepatic insulin resistance in control mice, the diabetogenic action was absent in JAK2A mice. Adipocyte GH signaling directly impinged on both adipose and hepatic insulin signal transduction. Collectively, our results show that adipose tissue governs the effects of GH on insulin and glucose homeostasis. Further, we show that JAK2 mediates liver insulin sensitivity via an extrahepatic, adipose tissue–dependent mechanism.

Authors

Kevin C. Corbit, João Paulo G. Camporez, Jennifer L. Tran, Camella G. Wilson, Dylan A. Lowe, Sarah M. Nordstrom, Kirthana Ganeshan, Rachel J. Perry, Gerald I. Shulman, Michael J. Jurczak, Ethan J. Weiss

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 545 59
PDF 140 13
Figure 287 2
Supplemental data 45 3
Citation downloads 106 0
Totals 1,123 77
Total Views 1,200
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts