Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

RCAN1-4 is a thyroid cancer growth and metastasis suppressor
Chaojie Wang, Motoyasu Saji, Steven E. Justiniano, Adlina Mohd Yusof, Xiaoli Zhang, Lianbo Yu, Soledad Fernández, Paul Wakely Jr., Krista La Perle, Hiroshi Nakanishi, Neal Pohlman, Matthew D. Ringel
Chaojie Wang, Motoyasu Saji, Steven E. Justiniano, Adlina Mohd Yusof, Xiaoli Zhang, Lianbo Yu, Soledad Fernández, Paul Wakely Jr., Krista La Perle, Hiroshi Nakanishi, Neal Pohlman, Matthew D. Ringel
View: Text | PDF
Research Article Endocrinology Oncology

RCAN1-4 is a thyroid cancer growth and metastasis suppressor

  • Text
  • PDF
Abstract

Metastasis suppressors are key regulators of tumor growth, invasion, and metastases. Loss of metastasis suppressors has been associated with aggressive tumor behaviors and metastatic progression. We previously showed that regulator of calcineurin 1, isoform 4 (RCAN1-4) was upregulated by the KiSS1 metastatic suppression pathway and could inhibit cell motility when overexpressed in cancer cells. To test the effects of endogenous RCAN1-4 loss on thyroid cancer in vivo, we developed RCAN1-4 knockdown stable cells. Subcutaneous xenograft models demonstrated that RCAN1-4 knockdown promotes tumor growth. Intravenous metastasis models demonstrated that RCAN1-4 loss promotes tumor metastases to the lungs and their subsequent growth. Finally, stable induction of RCAN1-4 expression reduced thyroid cancer cell growth and invasion. Microarray analysis predicted that nuclear factor, erythroid 2-like 3 (NFE2L3) was a pivotal downstream effector of RCAN1-4. NFE2L3 overexpression was shown to be necessary for RCAN1-4–mediated enhanced growth and invasiveness and NEF2L3 overexpression independently increased cell invasion. In human samples, NFE2L3 was overexpressed in TCGA thyroid cancer samples versus normal tissues and NFE2L3 overexpression was demonstrated in distant metastasis samples from thyroid cancer patients. In conclusion, we provide the first evidence to our knowledge that RCAN1-4 is a growth and metastasis suppressor in vivo and that it functions in part through NFE2L3.

Authors

Chaojie Wang, Motoyasu Saji, Steven E. Justiniano, Adlina Mohd Yusof, Xiaoli Zhang, Lianbo Yu, Soledad Fernández, Paul Wakely Jr., Krista La Perle, Hiroshi Nakanishi, Neal Pohlman, Matthew D. Ringel

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 629 146
PDF 118 22
Figure 500 7
Supplemental data 37 0
Citation downloads 104 0
Totals 1,388 175
Total Views 1,563
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts