Mutagenesis screening is a powerful forward genetic approach that has been successfully applied in lower-model organisms to discover genetic factors for biological processes. This phenotype-based approach has yet to be established in vertebrates for probing major human diseases, largely because of the complexity of colony management. Herein, we report a rapid strategy for identifying genetic modifiers of cardiomyopathy (CM). Based on the application of doxorubicin stress to zebrafish insertional cardiac (ZIC) mutants, we identified 4 candidate CM-modifying genes, of which 3 have been linked previously to CM. The long isoform of DnaJ (Hsp40) homolog, subfamily B, member 6b (
Yonghe Ding, Pamela A. Long, J. Martijn Bos, Yu-Huan Shih, Xiao Ma, Rhianna S. Sundsbak, Jianhua Chen, Yiwen Jiang, Liqun Zhao, Xinyang Hu, Jianan Wang, Yongyong Shi, Michael J. Ackerman, Xueying Lin, Stephen C. Ekker, Margaret M. Redfield, Timothy M. Olson, Xiaolei Xu
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 313 | 138 |
65 | 36 | |
Figure | 127 | 19 |
Table | 45 | 0 |
Supplemental data | 12 | 6 |
Citation downloads | 40 | 0 |
Totals | 602 | 199 |
Total Views | 801 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.