Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene
Yonghe Ding, … , Timothy M. Olson, Xiaolei Xu
Yonghe Ding, … , Timothy M. Olson, Xiaolei Xu
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e88797. https://doi.org/10.1172/jci.insight.88797.
View: Text | PDF | Corrigendum
Research Article Cardiology Genetics

A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene

  • Text
  • PDF
Abstract

Mutagenesis screening is a powerful forward genetic approach that has been successfully applied in lower-model organisms to discover genetic factors for biological processes. This phenotype-based approach has yet to be established in vertebrates for probing major human diseases, largely because of the complexity of colony management. Herein, we report a rapid strategy for identifying genetic modifiers of cardiomyopathy (CM). Based on the application of doxorubicin stress to zebrafish insertional cardiac (ZIC) mutants, we identified 4 candidate CM-modifying genes, of which 3 have been linked previously to CM. The long isoform of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b(L)) was identified as a CM susceptibility gene, supported by identification of rare variants in its human ortholog DNAJB6 from CM patients. Mechanistic studies indicated that the deleterious, loss-of-function modifying effects of dnajb6b(L) can be ameliorated by inhibition of ER stress. In contrast, overexpression of dnajb6(L) exerts cardioprotective effects on both fish and mouse CM models. Together, our findings establish a mutagenesis screening strategy that is scalable for systematic identification of genetic modifiers of CM, feasible to suggest therapeutic targets, and expandable to other major human diseases.

Authors

Yonghe Ding, Pamela A. Long, J. Martijn Bos, Yu-Huan Shih, Xiao Ma, Rhianna S. Sundsbak, Jianhua Chen, Yiwen Jiang, Liqun Zhao, Xinyang Hu, Jianan Wang, Yongyong Shi, Michael J. Ackerman, Xueying Lin, Stephen C. Ekker, Margaret M. Redfield, Timothy M. Olson, Xiaolei Xu

×

Figure 1

Mutagenesis-based modifier screen identified 4 gene-breaking transposon (GBT) mutants that modified doxorubicin-induced (DOX-induced) adult zebrafish death.

Options: View larger image (or click on image) Download as PowerPoint
Mutagenesis-based modifier screen identified 4 gene-breaking transposon ...
(A) Kaplan-Meier survival curves of adult WT and GBT heterozygous zebrafish injected with a single bolus of 20 μg/gram body mass (gbm) DOX (n = 10–18). GBT0411 mutant was identified that exacerbated DOX-induced fish death. GBT0411 vs. WT, *P < 0.05, log-rank test. (B) The insertional positions of RP2 transposon element in the 4 candidate cardiomyopathy-modifying GBT mutants. (C) qPCR analysis of the percent native transcripts of the tagged genes remaining in the adult fish heart of designated GBT heterozygous and homozygous mutants, respectively. Values represent mean ±SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts