Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Protein methionine oxidation augments reperfusion injury in acute ischemic stroke
Sean X. Gu, … , Anil K. Chauhan, Steven R. Lentz
Sean X. Gu, … , Anil K. Chauhan, Steven R. Lentz
Published May 19, 2016
Citation Information: JCI Insight. 2016;1(7):e86460. https://doi.org/10.1172/jci.insight.86460.
View: Text | PDF
Research Article Inflammation Vascular biology

Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

  • Text
  • PDF
Abstract

Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke.

Authors

Sean X. Gu, Ilya O. Blokhin, Katina M. Wilson, Nirav Dhanesha, Prakash Doddapattar, Isabella M. Grumbach, Anil K. Chauhan, Steven R. Lentz

×

Figure 1

Activation of NF-κB is potentiated by H2O2 in endothelial cells.

Options: View larger image (or click on image) Download as PowerPoint
Activation of NF-κB is potentiated by H2O2 in endothelial cells.
HUVECs ...
HUVECs were infected with an adenoviral NF-κB reporter, Ad-NF-κB-Luc (MOI = 1,000 particles/cell). At 40 hours after infection, cells were stimulated with 2 ng/ml of (A) TNF-α or (B) IL-1β in the presence of the indicated concentrations of H2O2. Alternatively, cells were stimulated with 30 μM H2O2 in the presence of the indicated concentrations of (C) TNF-α or (D) IL-1β. After 4 hours, NF-κB activity was assessed by a luciferase enzymatic assay. Results are normalized for total protein and for luciferase activity in PBS-treated control cells. Data are expressed as mean RLU ± SEM (n = 5–6). *P < 0.05, **P < 0.01, ***P < 0.001 vs. control, (A and B) 2-way ANOVA with Dunnett’s multiple comparisons test and (C and D) 2-way ANOVA with Sidak’s multiple comparisons test.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts