Abstract

Loss of functional pancreatic β cells is a hallmark of both type 1 and 2 diabetes. Identifying the pathways that promote β cell proliferation and/or block β cell apoptosis is a potential strategy for diabetes therapy. The transcriptional coactivator Yes-associated protein (YAP), a major downstream effector of the Hippo signaling pathway, is a key regulator of organ size and tissue homeostasis by modulating cell proliferation and apoptosis. YAP is not expressed in mature primary human and mouse β cells. We aimed to identify whether reexpression of a constitutively active form of YAP promotes β cell proliferation/survival. Overexpression of YAP remarkably induced β cell proliferation in isolated human islets, while β cell function and functional identity genes were fully preserved. The transcription factor forkhead box M1 (FOXM1) was upregulated upon YAP overexpression and necessary for YAP-dependent β cell proliferation. YAP overexpression protected β cells from apoptosis triggered by multiple diabetic conditions. The small redox proteins thioredoxin-1 and thioredoxin-2 (Trx1/2) were upregulated by YAP; disruption of the Trx system revealed that Trx1/2 was required for the antiapoptotic action of YAP in insulin-producing β cells. Our data show the robust proproliferative and antiapoptotic function of YAP in pancreatic β cells. YAP reconstitution may represent a disease-modifying approach to restore a functional β cell mass in diabetes.

Authors

Ting Yuan, Sahar Rafizadeh, Zahra Azizi, Blaz Lupse, Kanaka Durga Devi Gorrepati, Sushil Awal, Jose Oberholzer, Kathrin Maedler, Amin Ardestani

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement