Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery
Daniel A. Wolf, … , Jack Hoppin, Ajay Verma
Daniel A. Wolf, … , Jack Hoppin, Ajay Verma
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85311. https://doi.org/10.1172/jci.insight.85311.
View: Text | PDF
Resource and Technical Advance Neuroscience Therapeutics

Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

  • Text
  • PDF
Abstract

The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders.

Authors

Daniel A. Wolf, Jacob Y. Hesterman, Jenna M. Sullivan, Kelly D. Orcutt, Matthew D. Silva, Merryl Lobo, Tyler Wellman, Jack Hoppin, Ajay Verma

×

Full Text PDF

Download PDF (6.16 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts