Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis
Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton
Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton
View: Text | PDF
Research Article Inflammation Pulmonology

Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology — as measured by decreased lung collagen, fibrocytes, and histologic injury — and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders.

Authors

Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton

×

Figure 4

Vaccinia immunotherapy improves lung function.

Options: View larger image (or click on image) Download as PowerPoint
Vaccinia immunotherapy improves lung function.
(A) Diffusion capacity of...
(A) Diffusion capacity of mice on days 42 and 70 following i.p. bleomycin (Bleo) treatment with or without vaccinia vaccine immunotherapy. Pulmonary function testing for (B) tissue resistance and (C) lung compliance of mice on days 42 and 70 following i.p. Bleo treatment with or without vaccinia vaccine immunotherapy. Error bars represent one standard deviation of the mean. Experiments were performed 3 times with 10 mice per group. Significance determined by 1-way ANOVA followed by Tukey’s test when indicated.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts