Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis
Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton
Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton
View: Text | PDF
Research Article Inflammation Pulmonology

Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology — as measured by decreased lung collagen, fibrocytes, and histologic injury — and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders.

Authors

Samuel L. Collins, Yee Chan-Li, MinHee Oh, Christine L. Vigeland, Nathachit Limjunyawong, Wayne Mitzner, Jonathan D. Powell, Maureen R. Horton

×

Figure 2

Vaccinia vaccine immunotherapy abrogates fibrocyte recruitment and lung collagen deposition.

Options: View larger image (or click on image) Download as PowerPoint
Vaccinia vaccine immunotherapy abrogates fibrocyte recruitment and lung ...
(A) ELISA of blood serum CXCL12 28 days following i.p. bleomycin (Bleo) treatment. (B) Flow cytometric analysis of circulating blood fibrocytes (CD45+, Col I+) on day 28 following i.p. Bleo treatment. (C) Flow cytometric analysis of lung fibrocytes (CD45+, Col I+) 42 days following i.p. Bleo treatment. (D) Total lung collagen 42 days following i.p. Bleo treatment. Error bars represent one standard deviation of the mean. Experiments were performed 4 times with 5 mice per group (A and B). Experiments were performed 3 times with 10 mice per group (C and D). Paired Student’s t test were performed on samples with ANOVA. P < 0.05. Col I, collagen I.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts