The role of gamma-delta T (γδ T) cells in immune responses to common allergens is poorly understood. Here, we utilized single-cell (sc) transcriptomic analysis of allergen-reactive γδ T cells in humans to characterize the transcriptional landscapes and TCR repertoires in response to cockroach (CR) and mouse (MO) allergens. Using a potentially novel activation-induced marker (AIM) assay that allows detection of γδ T cells combined with scRNA sequencing and TCR repertoire analysis, we identified both shared and allergen-specific γδ T cell activation patterns and gene expression profiles. While CR extract activated both Vδ1 and Vδ2 subsets, MO extract primarily stimulated Vδ2 cells. Our analysis revealed allergen-specific clusters with distinct functional signatures, including enhanced inflammatory responses and cytotoxic effector functions in MO-specific γδ T cells and natural killer cell–mediated immunity and IFN-γ signaling in CR-specific populations. Comparison of allergic and nonallergic individuals highlighted differences in gene expression and TCR repertoires, including a higher IFNG expression in the CR-allergic compared with nonallergic cohorts, suggesting that phenotypic and functional differences are associated with γδ T allergen responses. This study provides insights into the cellular and molecular heterogeneity and functionality of allergen-reactive γδ T cells, offering a foundation for understanding their role in allergic diseases and potential therapeutic interventions.
Kendall Kearns, Sloan A. Lewis, Esther Dawen Yu, Adam Abawi, Eric Wang, Synaida Maiche, Monalisa Mondal, Pandurangan Vijayanand, Grégory Seumois, Bjoern Peters, Alessandro Sette, Ricardo Da Silva Antunes
Stimulation with allergen drives clustering of scRNA-sequencing data.