Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
α7nAChR on B cells directs T cell differentiation to prevent viral myocarditis
Jing Lu, Keren Chen, Zhihong Cen, Yanlan Huang, Yong Li, LiLi Chen, Weifeng Wu
Jing Lu, Keren Chen, Zhihong Cen, Yanlan Huang, Yong Li, LiLi Chen, Weifeng Wu
View: Text | PDF
Research Article Cardiology Inflammation

α7nAChR on B cells directs T cell differentiation to prevent viral myocarditis

  • Text
  • PDF
Abstract

Patients with viral myocarditis (VMC) exhibit evident autonomic nervous system imbalance, and adverse cardiac remodeling is involved in impaired cholinergic function. The α7 nicotinic acetylcholine receptor (α7nAChR), which is a neurotransmitter receptor, exerts immunoregulatory effects. Recent advances have illuminated the evolution and functions of peripheral and cardiac B cells in heart disease. However, the role of α7nAChR expressed by B cells in the progression of VMC has not been established. We revealed the neuroimmune communication landscape in the heart and found that the phenotypes of cardiac and splenic B cells and their α7nAChR expression changed dynamically during the progression of VMC to dilated cardiomyopathy. α7nAChR on B cells serves as a negative regulator by inhibiting their proinflammatory functions and signaling pathways. B cell–specific α7nAChR deficiency exacerbated myocardial inflammation, fibrosis, and cardiac dysfunction. However, these effects were abrogated in non-B cells from mice with IL-17A knockdown. Enhanced degradation of acetylcholine leads to an imbalance in cholinergic signaling, resulting in impaired neurotransmission. The acetylcholinesterase inhibitor pyridostigmine bromide could improve cardiac remodeling and prevent the progression of VMC to the chronic phase, which was partly dependent on the α7nAChR on B cells. Our findings provide notable insights into cardiac-neural-immune communication during myocardial injury.

Authors

Jing Lu, Keren Chen, Zhihong Cen, Yanlan Huang, Yong Li, LiLi Chen, Weifeng Wu

×

Full Text PDF

Download PDF (5.12 MB) | Download high-resolution PDF (73.93 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts