BACKGROUND. Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients’ ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function. METHODS. We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically ill, patients with lymphopenia who have COVID-19. The primary endpoint was to assess CYT107’s effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality. RESULTS. CYT107 was well tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without a significant difference between CYT107 and placebo. Patients with COVID-19 receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (P = 0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (P < 0.001), consistent with a beneficial drug effect. Importantly, CYT107-treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (P = 0.014). CONCLUSION. Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections. TRIAL REGISTRATION. NCT04379076, NCT04426201, NCT04442178, NCT04407689, NCT04927169. FUNDING. Funding for the trial was provided by RevImmune and the Cancer Research Institute.
Manu Shankar-Hari, Bruno Francois, Kenneth E. Remy, Cristina Gutierrez, Stephen Pastores, Thomas Daix, Robin Jeannet, Jane Blood, Andrew H. Walton, Reinaldo Salomao, Georg Auzinger, David Striker, Robert S. Martin, Nitin J. Anand, James Bosanquet, Teresa Blood, Scott Brakenridge, Lyle L. Moldawer, Vidula Vachharajani, Cassian Yee, Felipe Dal-Pizzol, Michel Morre, Frederique Berbille, Marcel van den Brink, Richard Hotchkiss
Usage data is cumulative from February 2025 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,263 | 102 |
455 | 41 | |
Figure | 128 | 0 |
Table | 136 | 0 |
Supplemental data | 337 | 10 |
Citation downloads | 91 | 0 |
Totals | 3,410 | 153 |
Total Views | 3,563 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.