Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Enhancing DC cancer vaccine by allogeneic MHC class II expression and Treg depletion
Noriko Seishima, … , William V. Williams, Jay A. Berzofsky
Noriko Seishima, … , William V. Williams, Jay A. Berzofsky
Published August 22, 2025
Citation Information: JCI Insight. 2025;10(16):e189024. https://doi.org/10.1172/jci.insight.189024.
View: Text | PDF
Research Article Immunology Oncology

Enhancing DC cancer vaccine by allogeneic MHC class II expression and Treg depletion

  • Text
  • PDF
Abstract

We assessed the therapeutic efficacy of a semiallogeneic dendritic cell (DC) vaccine in comparison to a syngeneic one for suppression of B16-F10 and TC-1 tumors. Syngeneic bone marrow–derived DCs (BMDCs) were generated from C57BL/6J mice and semiallogeneic BMDCs with a mutation in either MHC class I or II were generated from B6.C-H2-Kbm1/ByJ or B6(C)-H2-Ab1bm12/KhEgJ mice, respectively. We demonstrated in vivo and in vitro that the MHC class II semiallogeneic BMDC vaccine had superior efficacy over the syngeneic and the MHC class I semiallogeneic BMDC vaccine, providing allogeneic CD4+ T cell help to enhance the antitumor CD8+ T cell response through allogeneic stimulation by the mutant MHC class II molecules. We discovered that this help was induced only at an early stage of tumor growth and at a later stage of tumor growth; combining our BMDC vaccine with Treg depletion enhanced tumor suppression. We demonstrated the improved efficacy of a semiallogeneic BMDC vaccine that kept tumor-peptide presentation intact on syngeneic MHC class I molecules so that mutant MHC class II could provide allogeneic help. This strategy should enable promising new DC-based cancer immunotherapies, offering an alternative to autologous DC vaccines by incorporating allogenicity as an adjuvant.

Authors

Noriko Seishima, William Becker, Purevdorj B. Olkhanud, Hoyoung M. Maeng, Miguel A. Lopez-Lago, William V. Williams, Jay A. Berzofsky

×

Full Text PDF

Download PDF (4.42 MB) | Download high-resolution PDF (5.01 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts