Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
In vitro fertilization induces reproductive changes in male mouse offspring and has multigenerational effects
Eric A. Rhon-Calderon, … , Richard M. Schultz, Marisa S. Bartolomei
Eric A. Rhon-Calderon, … , Richard M. Schultz, Marisa S. Bartolomei
Published March 4, 2025
Citation Information: JCI Insight. 2025;10(8):e188931. https://doi.org/10.1172/jci.insight.188931.
View: Text | PDF
Research Article Development Reproductive biology

In vitro fertilization induces reproductive changes in male mouse offspring and has multigenerational effects

  • Text
  • PDF
Abstract

In vitro fertilization (IVF) is a noncoital method of conception used to treat human infertility. Although IVF is viewed as largely safe, it is associated with adverse outcomes in the fetus, placenta, and adult offspring. Because studies focusing on the effect of IVF on the male reproductive system are limited, we used a mouse model to assess the morphological and molecular effects of IVF on male offspring. We evaluated 3 developmental stages: 18.5-day fetuses and 12- and 39-week-old adults. Regardless of age, we observed changes in testicular-to-body weight ratios, serum testosterone levels, testicular morphology, gene expression, and DNA methylation. Also, sperm showed changes in morphology and DNA methylation. To assess multigenerational phenotypes, we mated IVF-conceived and naturally conceived males with wild-type females. Offspring from IVF males exhibited decreased fetal-to-placental weight ratios and changes in placenta gene expression and morphology regardless of sex. At 12 weeks of age, offspring showed higher body weights and differences in glucose, triglyceride, insulin, total cholesterol, HDL-C, and LDL/VLDL-C levels. Both sexes showed changes in gene expression in liver, testes, and ovaries and decreased global DNA methylation. Collectively, our findings demonstrate that male IVF offspring exhibit abnormal testicular and sperm morphology and molecular alterations with a multigenerational impact.

Authors

Eric A. Rhon-Calderon, Cassidy N. Hemphill, Alexandra J. Savage, Laren Riesche, Richard M. Schultz, Marisa S. Bartolomei

×

Full Text PDF

Download PDF (3.21 MB) | Download high-resolution PDF (23.86 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts