Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Epac1 contributes to apremilast-mediated rescue of pemphigus autoantibody-induced loss of keratinocyte adhesion
Anna M. Sigmund, Franziska C. Bayerbach, Daniela Kugelmann, Elisabeth Butz, Sina Moztarzadeh, Margarethe E.C. Schikora, Anja K.E. Horn, Mariya Y. Radeva, Sophia Engelmayer, Desalegn T. Egu, Matthias Goebeler, Enno Schmidt, Jens Waschke, Franziska Vielmuth
Anna M. Sigmund, Franziska C. Bayerbach, Daniela Kugelmann, Elisabeth Butz, Sina Moztarzadeh, Margarethe E.C. Schikora, Anja K.E. Horn, Mariya Y. Radeva, Sophia Engelmayer, Desalegn T. Egu, Matthias Goebeler, Enno Schmidt, Jens Waschke, Franziska Vielmuth
View: Text | PDF
Research Article Cell biology Dermatology

Epac1 contributes to apremilast-mediated rescue of pemphigus autoantibody-induced loss of keratinocyte adhesion

  • Text
  • PDF
Abstract

In the bullous autoimmune disease pemphigus vulgaris (PV), autoantibodies directed mainly against desmoglein 1 (Dsg1) and Dsg3 cause loss of desmosomal adhesion. We recently showed that intracellular cAMP increase by the phosphodiesterase 4 inhibitor apremilast was protective in different PV models. Thus, we here analyzed the involvement of the cAMP effector exchange factor directly activated by cAMP1 (Epac1). In Epac1-deficient mice pemphigus antibody-induced blistering was ameliorated in vivo while apremilast had no additional effect. Interestingly, augmented protein levels of Dsg1 and Dsg3 as well as increased Dsg1 mRNA levels and higher numbers of Dsg1- and Dsg3-dependent single-molecule interactions were detected in keratinocytes derived from Epac1-deficient mice. This was paralleled by stronger intercellular adhesion under baseline conditions and prevention of pemphigus autoantibody-induced loss of intercellular adhesion. However, the protective effect of apremilast against loss of intercellular adhesion in response to the pathogenic Dsg3 antibody AK23 was attenuated in Epac1-deficient keratinocytes. Similarly, the Epac1 inhibitor Esi09 protected keratinocytes from pemphigus antibody-induced loss of adhesion. Mechanistically, Epac1 deficiency resulted in lack of apremilast-induced Rap1 activation and phosphorylation of Pg at S665. Taken together, these data indicate that Epac1 is involved in the regulation of baseline and cAMP-mediated stabilization of keratinocyte adhesion.

Authors

Anna M. Sigmund, Franziska C. Bayerbach, Daniela Kugelmann, Elisabeth Butz, Sina Moztarzadeh, Margarethe E.C. Schikora, Anja K.E. Horn, Mariya Y. Radeva, Sophia Engelmayer, Desalegn T. Egu, Matthias Goebeler, Enno Schmidt, Jens Waschke, Franziska Vielmuth

×

Figure 5

Apremilast induces phosphorylation of Pg and Rap1 activation in a Epac1-dependent manner.

Options: View larger image (or click on image) Download as PowerPoint
Apremilast induces phosphorylation of Pg and Rap1 activation in a Epac1-...
(A) Western blot analysis of WT and Epac1-ko keratinocyte lysates after treatment with apremilast (Apr) or forskolin/rolipram (F/R) for 1 hour (representative of n > 6). Phosphorylation status of desmoplakin (Dp) and plakoglobin (Pg) were analyzed. Epac1 ko was verified and α-tubulin (α-tub) was used as a loading control. Pg is phosphorylated upon F/R treatment independently of Epac1 and upon Apr treatment in WT cells only. Neither phosphorylation on S165 nor S2849 of Dp was affected by Apr or F/R. Quantification of P-Pg (S665) (B), P-Dp (S2849) (C),and P-Dp (S165) (D). (E) Active Rap1 upon Apr treatment in WT and Epac1-ko keratinocytes was pulled down and analyzed by Western blot (representative of n = 3). (F) Quantification of Rap1 activation. Bars indicate mean value ± SEM. *P < 0.05, 2-way ANOVA with Bonferroni (B–D) or Tukey (F) correction.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts