Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Allergen induces pulmonary neuroendocrine cell hyperplasia in a model of asthma
Estelle Kim, … , Jamie Verheyden, Xin Sun
Estelle Kim, … , Jamie Verheyden, Xin Sun
Published July 8, 2025
Citation Information: JCI Insight. 2025;10(13):e187018. https://doi.org/10.1172/jci.insight.187018.
View: Text | PDF
Research Article Cell biology Development Pulmonology

Allergen induces pulmonary neuroendocrine cell hyperplasia in a model of asthma

  • Text
  • PDF
Abstract

Asthma is characterized by exacerbated response to triggers such as allergen. While pulmonary neuroendocrine cells (PNECs), a rare population of airway epithelial cells, are essential for amplifying allergen-induced asthma response, how PNECs are regulated to achieve this role remains poorly understood. Here we show that in the adult mouse airway, inactivation of achaete-scute-like protein 1 gene in PNECs led to loss of these cells. Intriguingly, exposure of these mutants to house dust mites (HDM), a common allergen, led to reappearance of PNECs. Similarly, exposure of wild-type mice to HDM led to PNEC hyperplasia, a result of proliferation of existing PNECs and transdifferentiation from club cells. Single-cell RNA-Seq experiments revealed PNEC heterogeneity, including the emergence of an allergen-induced PNEC subtype. Notch signaling was downregulated in HDM-treated airway, and treatment with Notch agonist prevented PNEC hyperplasia. These findings together suggest that HDM-induced PNEC hyperplasia may contribute to exacerbated asthma response.

Authors

Estelle Kim, Brian K. Wells, Hannah Indralingam, Yujuan Su, Jamie Verheyden, Xin Sun

×

Figure 4

Single-cell transcriptomic characterization of epithelial cells with or without allergen challenge.

Options: View larger image (or click on image) Download as PowerPoint
Single-cell transcriptomic characterization of epithelial cells with or ...
(A) Uniform manifold approximation and projection (UMAP) plot of integrated scRNA-Seq data of Ascl1-lineaged cells supplemented with EpCAM+ epithelial cells. (B) Dot plot showing top marker genes for each epithelial population. (C) Feature plot of PNEC markers. (D) UMAP plot of PNEC populations. (E) Dot plot showing top marker genes for PNEC clusters. (F) Dot plot showing cell surface or secreted factor genes for PNEC clusters with or without HDM. Cluster 2 is primarily present in the HDM group. (G) Representative images of WT lung sections stained with anti-CGRP and either anti-LAMP3 or anti–Neuritin-1 (anti-NRN1) antibodies, as indicated. Arrowheads point to cells with coexpression. Scale bar size 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts