Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

12-Lipoxygenase inhibition delays onset of autoimmune diabetes in human gene replacement mice
Titli Nargis, Charanya Muralidharan, Jacob R. Enriquez, Jiayi E. Wang, Kerim B. Kaylan, Advaita Chakraborty, Sarida Pratuangtham, Kayla Figatner, Jennifer B. Nelson, Sarah C. May, Jerry L. Nadler, Matthew B. Boxer, David J. Maloney, Sarah A. Tersey, Raghavendra G. Mirmira
Titli Nargis, Charanya Muralidharan, Jacob R. Enriquez, Jiayi E. Wang, Kerim B. Kaylan, Advaita Chakraborty, Sarida Pratuangtham, Kayla Figatner, Jennifer B. Nelson, Sarah C. May, Jerry L. Nadler, Matthew B. Boxer, David J. Maloney, Sarah A. Tersey, Raghavendra G. Mirmira
View: Text | PDF
Research Article Endocrinology Therapeutics

12-Lipoxygenase inhibition delays onset of autoimmune diabetes in human gene replacement mice

  • Text
  • PDF
Abstract

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells and involves an interplay between β cells and cells of the innate and adaptive immune systems. We investigated the therapeutic potential of targeting 12-lipoxygenase (12-LOX), an enzyme implicated in inflammatory pathways in β cells and macrophages, using a mouse model in which the endogenous mouse Alox15 gene is replaced by the human ALOX12 gene. Our finding demonstrated that VLX-1005, a potent 12-LOX inhibitor, effectively delayed the onset of autoimmune diabetes in human gene replacement non-obese diabetic mice. By spatial proteomics analysis, VLX-1005 treatment resulted in marked reductions in infiltrating T and B cells and macrophages, with accompanying increases in immune checkpoint molecule PD-L1, suggesting a shift toward an immunosuppressive microenvironment. RNA sequencing analysis of isolated islets and polarized proinflammatory macrophages revealed significant alteration of cytokine-responsive pathways and a reduction in IFN response after VLX-1005 treatment. Our studies demonstrated that the ALOX12 human replacement gene mouse provides a platform for the preclinical evaluation of LOX inhibitors and supports VLX-1005 as an inhibitor of human 12-LOX that engages the enzymatic target and alters the inflammatory phenotypes of islets and macrophages to promote the delay of autoimmune diabetes.

Authors

Titli Nargis, Charanya Muralidharan, Jacob R. Enriquez, Jiayi E. Wang, Kerim B. Kaylan, Advaita Chakraborty, Sarida Pratuangtham, Kayla Figatner, Jennifer B. Nelson, Sarah C. May, Jerry L. Nadler, Matthew B. Boxer, David J. Maloney, Sarah A. Tersey, Raghavendra G. Mirmira

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,416 504
PDF 356 53
Figure 265 3
Table 79 0
Supplemental data 343 20
Citation downloads 86 0
Totals 2,545 580
Total Views 3,125

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts