Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Analysis of CNS autoimmunity in genetically diverse mice reveals unique phenotypes and mechanisms
Emily A. Nelson, … , J. Matthew Mahoney, Dimitry N. Krementsov
Emily A. Nelson, … , J. Matthew Mahoney, Dimitry N. Krementsov
Published September 26, 2024
Citation Information: JCI Insight. 2024;9(21):e184138. https://doi.org/10.1172/jci.insight.184138.
View: Text | PDF
Research Article Genetics

Analysis of CNS autoimmunity in genetically diverse mice reveals unique phenotypes and mechanisms

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The 32 CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary–EAE (AR-EAE), accompanied by distinct immunopathology. Sex differences in EAE severity were observed in 6 strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning–based approaches prioritized candidate genes for loci underlying EAE severity (Abcc4 and Gpc6) and AR-EAE (Yap1 and Dync2h1). This work expands the EAE phenotypic repertoire and identifies potentially novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation.

Authors

Emily A. Nelson, Anna L. Tyler, Taylor Lakusta-Wong, Karolyn G. Lahue, Katherine C. Hankes, Cory Teuscher, Rachel M. Lynch, Martin T. Ferris, J. Matthew Mahoney, Dimitry N. Krementsov

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,126 228
PDF 222 35
Figure 574 0
Table 206 0
Supplemental data 245 6
Citation downloads 120 0
Totals 2,493 269
Total Views 2,762

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts