Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Short-term disruption of TGF-β signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection
Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B. Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A. Schwartz, Jay D. Humphrey, George Tellides
Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B. Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A. Schwartz, Jay D. Humphrey, George Tellides
View: Text | PDF
Research Article Cell biology Vascular biology

Short-term disruption of TGF-β signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection

  • Text
  • PDF
Abstract

Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, a common experimental model of angiotensin II–induced aortopathy in mice appears independent of high blood pressure, as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by cotreatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice following 1 week of disrupted TGF-β signaling in smooth muscle cells (SMCs). Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes (as did angiotensin II) that was prevented by hydralazine. Initial medial injury manifested as blood extravasation among SMCs and fibrillar matrix, progressive delamination from accumulation of blood, and stretched or ruptured SMCs with persistent attachments to elastic fibers. Altered regulatory contractile molecule expression was not of pathological importance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically basement membrane–associated multiplexin collagen, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure can cause dissection in aortas rendered vulnerable by inhibition of TGF-β–driven extracellular matrix production by SMCs.

Authors

Bo Jiang, Pengwei Ren, Changshun He, Mo Wang, Sae-Il Murtada, María Jesús Ruiz-Rodríguez, Yu Chen, Abhay B. Ramachandra, Guangxin Li, Lingfeng Qin, Roland Assi, Martin A. Schwartz, Jay D. Humphrey, George Tellides

×

Usage data is cumulative from February 2025 through December 2025.

Usage JCI PMC
Text version 1,801 254
PDF 519 64
Figure 754 14
Supplemental data 321 31
Citation downloads 90 0
Totals 3,485 363
Total Views 3,848

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts