Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD
Justin Sui, Hanxi Xiao, Ugonna Mbaekwe, Nai-Chun Ting, Kaley Murday, Qianjiang Hu, Alyssa D. Gregory, Theodore S. Kapellos, Ali Öender Yildirim, Melanie Königshoff, Yingze Zhang, Frank Sciurba, Jishnu Das, Corrine R. Kliment
Justin Sui, Hanxi Xiao, Ugonna Mbaekwe, Nai-Chun Ting, Kaley Murday, Qianjiang Hu, Alyssa D. Gregory, Theodore S. Kapellos, Ali Öender Yildirim, Melanie Königshoff, Yingze Zhang, Frank Sciurba, Jishnu Das, Corrine R. Kliment
View: Text | PDF
Research Article Cell biology Pulmonology

Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD

  • Text
  • PDF
Abstract

Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation, with smoke exposure being a major risk factor. To define previously unknown biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single-cell RNA-Seq data from the mouse smoke-exposure model to identify significant latent factors (context-specific coexpression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and new biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from patients with COPD, and smoke exposure resulted in enhanced GSN release from airway cells from patients with COPD. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provides a translational analytical platform for other diseases.

Authors

Justin Sui, Hanxi Xiao, Ugonna Mbaekwe, Nai-Chun Ting, Kaley Murday, Qianjiang Hu, Alyssa D. Gregory, Theodore S. Kapellos, Ali Öender Yildirim, Melanie Königshoff, Yingze Zhang, Frank Sciurba, Jishnu Das, Corrine R. Kliment

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,742 405
PDF 313 54
Figure 1,367 1
Supplemental data 793 36
Citation downloads 136 0
Totals 4,351 496
Total Views 4,847

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts