Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Differentially disrupted spinal cord and muscle energy metabolism in spinal and bulbar muscular atrophy
Danielle DeBartolo, … , Hsin-Yao Tang, Diane E. Merry
Danielle DeBartolo, … , Hsin-Yao Tang, Diane E. Merry
Published March 7, 2024
Citation Information: JCI Insight. 2024;9(7):e178048. https://doi.org/10.1172/jci.insight.178048.
View: Text | PDF
Research Article Genetics Neuroscience

Differentially disrupted spinal cord and muscle energy metabolism in spinal and bulbar muscular atrophy

  • Text
  • PDF
Abstract

Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide–dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cords of SBMA mice. Metabolomic and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that use NAD+, in addition to the NAD+ salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of nicotinamide riboside kinase 2 (Nmrk2), which encodes a key kinase responsible for NR phosphorylation, allowing its use by the NAD+ salvage pathway. Together, these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation because of decreased levels of Nmrk2.

Authors

Danielle DeBartolo, Frederick J. Arnold, Yuhong Liu, Elana Molotsky, Hsin-Yao Tang, Diane E. Merry

×

Figure 1

Dietary supplementation with NR does not ameliorate motor dysfunction in a mouse model of SBMA.

Options: View larger image (or click on image) Download as PowerPoint
Dietary supplementation with NR does not ameliorate motor dysfunction in...
(A) Body weight analysis of nontransgenic mice fed control chow (n = 24), nontransgenic mice fed chow supplemented with 400 mg/kg/d NR (n = 26), AR112Q mice fed control chow (n = 26), and AR112Q mice fed chow supplemented with 400 mg/kg/d NR (n = 24). (B) Accelerating rotarod analysis of control or NR-treated nontransgenic and AR112Q mice. Mice performed 4 trials every 4 weeks beginning at 10 weeks of age. Forepaw (C) and all-paw (D) grip strength of control or NR-treated nontransgenic and AR112Q mice. Mice were tested every 4 weeks beginning at 10 weeks of age. Statistical significance for all behavioral testing was determined using mixed effects analysis with post hoc Tukey test for multiple comparisons. Data represent mean ± SD. *P < 0.05 AR112Q Ctl versus Ntg Ctl and Ntg NR; †P < 0.05 AR112Q NR versus Ntg Ctl and Ntg NR.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts